
www.manaraa.com

Master thesis in Applied Information Technology

REPORT NO. 2008:014
ISSN: 1651-4769

Department of Applied Information Technology or
Department of Computer Science

Bottlenecks in Agile Software Development
Identified Using Theory of Constraints (TOC) Principles

ASTA MURAUSKAITE
VAIDAS ADOMAUSKAS

IT University of Gothenburg

Chalmers University of Technology and University of Gothenburg

Gothenburg, Sweden 2008

www.manaraa.com

2

ABSTRACT
This master thesis identifies main bottlenecks in agile software

development exemplified by research industry partner, the

international advanced technology company, Ericsson. Theory of

Constraints is used as an analytical tool. The research consists of

three phases. First, high level bottlenecks of four agile software

development methods: Lean software development, Extreme

Programming (XP), Scrum, and Feature Driven Development

(FDD) are identified. After that, theoretical model for identifying

bottlenecks in Lean software development implementations is

developed. At the end, this model is verified in a studied unit at

Ericsson. Identified bottlenecks narrows down possible issues in

agile software development implementations and allows focusing

on the core problems. Companies working according to agile

methods could benefit from using the results of the thesis to

identify bottlenecks in their implementations.

Categories and Subject Descriptors

K.6.1 [Management of Computing and Information Systems]:

Project and People Management - Management techniques.

General Terms

Measurement, Documentation, Performance, Theory.

Keywords

Agile software development, Lean software development, Scrum,

Extreme Programming (XP), Feature driven development (FDD),

Theory of Constraints (TOC), bottleneck.

1. INTRODUCTION
The increased speed and change in business world increased the

need to develop software faster and cheaper as well as higher

quality and more adaptable to constant change. New software

development methods were developed and named as being agile.

Despite the fact that all of the agile software development

methods have the same goal, each of them has a different

approach. This was a base for researchers to look into differences

and similarities of agile software development methods from

various angles [10][14][15]. Many case studies were performed

investigating if and when agile implementations work

[23][24][25]. Researchers investigated how to fit agile methods

for large organizations [26] and traditional development

organizations [27]. Besides, they investigated even more

specifically: e.g. how to manage requirements in agile processes

[28].

Despite the variety of literature about agile software development,

we could not find any that would discuss possible bottlenecks of

agile software development. However, according to Goldratt [1]

every process has a bottleneck – a weakest link in the chain that

limits throughput. Identifying and eliminating it will increase

throughput what leads to more profit. Therefore, our master thesis

research will focus on creating a model that allows identifying

bottlenecks in agile software development methods. Furthermore,

Lean is chosen as a method to scrutinize in more detail. This

choice is made due to a fact that our research industry partner, an

international advanced technology company called Ericsson, is

implementing an agile software development method in one

product unit. Their method is following main Lean principles.

Hence, we verify our theoretically identified bottlenecks in a

studied unit at Ericsson.

The reasons above leads us to our research question:

• What are potential bottlenecks in agile software

development?

As an analytical tool to achieve our research results, we choose to

use Theory of Constraints (TOC). The main concept of TOC is to

identify and exploit bottlenecks. Therefore, we use TOC thinking

principles to identify possible bottlenecks in agile software

development projects.

The thesis is organized this way. Chapter 2 describes theories and

methods used in research. In chapter 3 we describe the research

method and reasoning behind it. The results are described in

chapter 4. The validity of the results is discussed in chapter 5.

Finally, the conclusions are presented in chapter 6.

2. THEORY OVERVIEW
This chapter briefly describes all methods used in this master

thesis. It consists of three parts. First, we present a short overview

of Theory of Constraints (TOC) and motivation of choosing it as

an analytical tool to identify possible bottlenecks in agile software

development. Afterwards, we present a general definition of agile

software development (subchapter 2.2). Finally, we describe

analyzed agile software development methods (subchapter 2.3):

Lean Software Development, Extreme Programming (XP), Scrum,

and Feature Driven Development (FDD). These descriptions

should help the reader to get broad overview of different agile

methods as well as their similarities and differences.

2.1 Theory of Constraints (TOC)
Goldratt developed an approach for continuous improvement

called Theory of Constraints (TOC), introduced in the book “The

Goal” [2]. TOC was applied for production and manufacturing

operations management. Goldratt’s later books extended the

application of the theory to other fields such as sales, marketing

and production distribution [3]; project management [1]; and

supply chain management [4]. We apply TOC thinking principles

to identify potential bottlenecks in agile software development in

this thesis.

TOC is a prescriptive theory [9], which means that it provides

answer to the question what the constraint of the system is.

Besides, it has developed tools to make logical decisions how to

deal with them [5][6]. TOC enables managers to answer three

fundamental questions about the change:

• WHAT to change?

• What to change TO?

• HOW to cause the change?

These questions are system-level, not process-level questions.

They are designed to focus efforts on the whole system

improvement. Undoubtedly, they will have impact on individual

processes (positive or even negative), but the aim is to improve

system as a whole.

A system is a project or a portfolio of projects in software

development environment. This means that TOC focuses on

bottlenecks which allow increasing throughput of a project or a

www.manaraa.com

3

project portfolio. Exploiting identified bottlenecks will definitely

affect internal activities within the project. It might even make

them less efficient. Despite that, the throughput of the system as a

whole (project or project portfolio) will be increased.

2.1.1 TOC Principles
Following paragraphs describe some of TOC principles, defined

by Dettmer [9] and used by us to identify bottlenecks in agile

software development:

1. System as “chains”.

TOC views every system as a chain or a system of

chains (e.g. all tasks that have to be accomplished in

particular order to finish a software project). This is

essential way of thinking as it implies that every chain

has the weakest link – a bottleneck. Furthermore, at the

particular point of the time there is the only one weakest

link, which enables clear focus. The weakest link

(bottleneck) can be found and strengthened. Working

only with the weakest links will improve the system

(chain) as a whole.

2. Cause and effect

Every system exists in cause-effect relations. Something

happens (the effect) because something else has

happened (the cause). TOC provides tools and a

thinking process to employ cause-effect relations to

represent our complex environments. They are visually

presented as trees.

For example, if our goal is to have an employee who

can write the code, he has to be educated and he has to

have tools. Educated person has to have theoretical

knowledge as well as practical experience. This small

example would be presented by TOC in the following

cause-effect tree (see Figure 1). It means that in order to

achieve higher branches in a tree, all lower ones must be

implemented.

Figure 1. An example of TOC cause-effect tree

In order to read the tree, if-then logics should be used.

The tree presented in Figure 1 should be read: “IF a

person has theoretical knowledge AND a person has

experience THEN a person is educated to write the

code”. “IF a person is educated to write the code AND a

person has tools THEN a person can write the code”.

We will use this cause and effect principle and trees to

connect and visualize possible bottlenecks in agile

software development (see subchapters 4.1 and 4.2).

3. Undesirable effects and core problems

Almost everything found in a system as problems are

actually undesirable effects. It is not the root of the

problem (the core problem). Solving undesirable effects

gives false security feeling that a problem is solved.

Nevertheless, the existing problem has a tendency to

appear again as a core problem still exists in a system.

Only after the core problem is solved, the undesirable

effect, that was a bottleneck in the first place (as well as

the other undesirable effects that rose from the core

problem), is actually solved and prevented from

returning.

For instance, we think that a person in our example

presented in Figure 1 is not educated enough. This is an

undesirable effect as a person cannot write the code. A

core problem is either a person not having theoretical

knowledge or a person not having experience. If a

person does not have experience, but a company sends a

person to a theoretical programming class the

undesirable effect will remain. Only solving the core

problem, training a person with practical exercises, will

help us to achieve the goal: have employee who can

write the code.

Identifying core problems, not undesirable effects, in

particular situations means identifying the bottlenecks.

We will use this principle to identify possible

bottlenecks in Lean software development (see

subchapter 4.2).

4. Physical vs. policy bottlenecks

Physical bottlenecks are relatively easy to find and

break. However, most real bottlenecks that exist in

systems are policy bottlenecks. Most commonly,

physical bottlenecks are just a result of policies and

rules in organization. Policy bottlenecks are much more

difficult, but normally breaking them resolves in much

larger improvements.

Software development is not an exception. For example,

developers decide to use a tool for writing standard

comments in their integrated development environment

(IDE) and then automatically transforming them to

software documentation. All software documentation

policies in company have to be reviewed and changed

accordingly. If not, new policy bottleneck may be

created: an old software documentation policy will

require an old type of documentation at the same time

when a new one is generated. This means that a new

initiative will add more work to a project, rather than

improve it.

To follow this TOC principle, while identifying possible

bottlenecks in agile software development

implementation in a studied unit at Ericsson, we will

look more carefully for possible policy bottlenecks

rather than physical ones.

www.manaraa.com

4

2.1.2 The Five Focusing Steps
Goldratt has developed TOC to enable a continuous improvement

process [2]. When an organization knows its goal and understands

the concept of a bottleneck it should follow the five focusing steps

continuously to adjust improvements to changing environment

[7]. We will not be using these TOC Five Focusing Steps for this

master thesis research, as our goal is to identify possible

bottlenecks (only step 1). Despite that, the ones that will use our

research results should follow these steps in order to break

identified bottlenecks and to continually improve their agile

software development projects.

The five focusing steps are:

1. Identify the system bottleneck

Find the weakest link in the system of chains.

Remember, that there is only one weakest link at a given

point of time. Look carefully for policy bottlenecks even

if it is easier to find a physical bottleneck.

2. Exploit the bottleneck

When a bottleneck is found it is essential to assure that

it works 100% and all activities which do not directly

add value to the tasks of a bottleneck has to be

eliminated. This step enables to increase capacity of a

bottleneck resource without additional investment.

3. Subordinate everything else to the above decision

After performing step 2 (exploiting the bottleneck) all

the rest of the system has to be adjusted to enable a

bottleneck to operate at a maximum effectiveness. It

might include changing rules, procedures, reassigning

some tasks of a bottleneck resource for non bottleneck

resources, and other possible subordination.

4. Elevate the system’s bottleneck

This step is reached in case steps 2 and 3 did not break

the bottleneck (internal system adjustments were not

sufficient to break the bottleneck). Elevating the

bottleneck means doing whatever it takes to break it.

That usually involves investment in money, time, energy

or other resources. Therefore this step should be

executed only after doing everything that is possible in

steps 2 and 3.

5. Go back to Step 1, but do not allow inertia to become a

system bottleneck.

There is always the weakest link in a chain (a

bottleneck). If a bottleneck is broken in step 3 or 4 it is

a must to come back to step 1 and start looking for a

new bottleneck. This is the process of continuous

improvement which never ends. It provides with a

strategy always to focus on current bottlenecks. It also

reminds that it is important not to allow inertia to

become a system bottleneck: even already broken

bottlenecks might become bottlenecks again due to

changing environment, so they have to be revised

continuously as well.

2.1.3 Motivation to Choose TOC for the Research
There are four main motivation factors why we chose to use TOC

and its principles described in paragraph 2.1.1 for this master

thesis. First, TOC principles enable to view agile software

development as system of chains. Second, they allow modelling

agile software development principles and practices into trees

with cause-effect relations. Third, TOC principles enable to

identify main bottlenecks (core problems vs. undesirable effects,

policy vs. physical bottlenecks). Finally, TOC allows to focus on

core problems and “to channel improvement efforts for maximum

immediate effect” [9]. It also provides tools to do that: TOC five

focusing steps described in paragraph 2.1.2. This means that

output of our master thesis research, identified possible

bottlenecks, can be immediately reviewed and exploited in a

company to achieve fast results. Furthermore, it will create a

process of continuous improvement in a company.

This subchapter gave a short overview of a theory that is used to

conduct a research. The following subchapter will present a short

overview of agile software development in general.

2.2 Agile Software Development
Agile software development emerged as an alternative to

document-driven, rigorous software development processes [14].

Software developers realized that processes which require many

documents, artefacts, and procedures to follow is too slow to fulfil

customer needs. Moreover, business needs nowadays change

faster than software projects following old methods are able to

implement them. Therefore, the focus had to switch from fulfilling

well predefined project requirements to delivering up to date

value to the customer.

2.2.1 Manifesto for Agile Software Development
A common ground for agile software development was defined in

2001, when 17 experienced and recognized software development

“gurus”, inventors and practitioners of different agile software

development methods gathered together. Participants agreed and

signed The Manifesto for Agile Software Development [14]. This

manifesto declares the main values of agile software development:

“We are uncovering better ways of developing software by doing

it and helping others do it. Through this work we have come to

value:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

That is, while there is value in the items on the right, we value the

items on the left more.” [11]

2.2.2 Principles Behind the Agile Manifesto
Manifesto for Agile Software Development is followed by 12

principles. In this master thesis we assume, that these principles

are important to consider for software development process to be

recognized as agile. We do not question their validity or

sufficiency and accept them as it is. We use these principles as a

base for identifying possible bottlenecks in different agile

software development methods (see subchapter 4.1).

Principles behind the Agile Manifesto are [11]:

1. Satisfy the customer:

Our highest priority is to satisfy the customer through

early and continuous delivery of valuable software.

2. Welcome changing requirements:

www.manaraa.com

5

Welcome changing requirements, even late in

development. Agile processes harness change for the

customer's competitive advantage.

3. Deliver working software frequently:

Deliver working software frequently, from a couple of

weeks to a couple of months, with a preference to the

shorter timescale.

4. Motivate individuals:

Build projects around motivated individuals. Give them

the environment and support they need, and trust them

to get the job done.

5. Interact frequently with stakeholders:

Business people and developers must work together

daily throughout the project.

6. Communicate face to face:

The most efficient and effective method of conveying

information to and within a development team is face-

to-face conversation.

7. Measure by working software:

Working software is the primary measure of progress.

8. Maintain constant pace:

Agile processes promote sustainable development. The

sponsors, developers, and users should be able to

maintain a constant pace indefinitely.

9. Sustain technical excellence and good design:

Continuous attention to technical excellence and good

design enhances agility.

10. Keep it simple:

Simplicity, the art of maximizing the amount of work

not done, is essential.

11. Empower self-organizing teams:

The best architectures, requirements, and designs

emerge from self-organizing teams.

12. Reflect and adjust continuously:

At regular intervals, the team reflects on how to become

more effective, then tunes and adjusts its behaviour

accordingly.

We will use these principles to identify possible high level

bottlenecks of agile software development methods (see

subchapter 4.1).

Subchapter above shortly presented main values and principles of

agile software development. The following subchapter will

present four specific agile software development methods used in

this master thesis research.

2.3 Agile Software Development Methods
There is a number of software development methods that follow

the values and principles described above. They all fall under

agile software development methods classification. For this master

thesis research, due to time and scope constraints, we decided to

choose four agile software development methods for further

analysis. They are: Lean software development, Extreme

Programming (XP), Scrum, and Feature Driven Development

(FDD). We choose them due to different approaches they have to

achieve agile goals. Lean development is about reducing the

development timeline by removing all no value-adding wastes

[29]. Besides, it is the closest method to current agile software

development method Ericsson is implementing [29]. XP is one of

the most agile methods that take common sense software

engineering practices to the extreme level [31]. We choose Scrum

because of its strong focus on self organizing teams, daily team

measurements, and avoidance of predefined steps [15]. FDD,

unlike other agile software development approaches, encourages

an up-front architectural modelling and accomplishes core goals

in different ways [14].

Further subchapters will shortly introduce these methods

describing their proposed development processes and main

principles they follow. In the end, principles are presented in a

tree that is based on TOC “Cause and effect” principle described

in paragraph 2.1.1. “If then” logics is used to read the tree. As an

example see Figure 1.

2.3.1 Lean Software Development
Lean Software Development is an agile development method that

applies Lean production principles which were created in Toyota

Motor Company in 1980s to software development [16][22].

“Lean thinking focuses on giving customers what they want, when

and where they want it, without a wasted motion or wasted

minute” [21].

Lean Software Development suggests following iterative style of

development, that creates incremental results at a steady pace.

Lean Software development process is composed of four phases:

1. Preparation

2. Planning

3. Implementation

4. Assessment

At the beginning of development effort an initial backlog of

prioritized desirable stories (features) is assembled. This is the

preparation phase. Backlog items are usually features in terms of

business goals since the Lean approach is to delay detailed

analysis until the last responsible moment.

Planning meeting is held at the beginning of iteration. The whole

team makes estimations how long the top priority stories from

backlog will take to develop, test, document and deploy.

According to these estimations and team capacity they pick the

amount of stories they will be able to implement during the

iteration. Team members decide and commit to iteration goal,

which describes the theme of the feature set they picked for

iteration.

During implementation phase a team develops, tests, documents

and prepares for deployment the feature set they picked. Daily 10-

15 minute team meetings are held to discuss what each team

member has accomplished since the last meeting, what they will

be doing till the next meeting, what problems they have, and

where they need help. A story is not considered done until the

team updates all associated artefacts (user documentation, design

documents and other artefacts).

A review meeting is held at the end of iteration. The goal of the

meeting is to show for the customer how much value was added to

the product during the iteration. Feedback from customer is

www.manaraa.com

6

collected to make changes if needed. After this iteration

assessment, planning meeting starts for the next iteration.

Lean Software development has 7 main principles (see Figure 2).

“As a group, these principles provide guidance on how to deliver

software faster, better, and for less cost – all at the same time.”

[21]

• Eliminate waste – remove everything that does not

create a clear value for a customer (product).

• Build Quality In – focus on eliminating defects as soon

as they are detected; avoid creating defects in the first

place.

• Create Knowledge – encourage systematic learning

throughout the development cycle and make sure that

tacit knowledge is shared.

• Defer Commitment – schedule irreversible decisions for

the last responsible moment, that is, the last chance to

make the decision before it is too late.

• Deliver As Fast As Possible – deliver software so fast

that your customer would not have time to change their

minds.

• Empower the Team – develop an organization where

each person has an authority to prioritize, take

responsibility and come up with solutions instead of

having someone telling what to do and how to do it.

• Optimize the Whole – optimize the whole value stream

from the time it receives an order to address a customer

need until software is deployed and the need is

addressed; avoid suboptimization.

Figure 2. Lean Software Development Principles

2.3.2 Extreme Programming (XP)
Extreme Programming (XP) is an agile development method that

value simplicity, feedback, community, and courage.[14] [15].

XP development process consists of three main iterative phases:

1. Planning

2. Development

3. Acceptance

At the beginning of a project Planning Game is held where the

project is divided into iterations of 1 to 3 weeks. Story Cards that

represent features are created and the project releases dates are set.

Each release starts with a half day Release Planning Game where

Story Cards are reviewed, estimated, and prioritized by a

customer. Every iteration begins with Iteration Planning Game

where the customer chooses which Story Cards should be

implemented in the iteration. Furthermore, a task list is created

and team members choose the tasks they want to work next.

Development phase starts with the high level design sketch on a

whiteboard. Programming is held in pairs where both team

members have the same responsibility for the code. All code is

continuously integrated and tested on a separate machine.

In the acceptance phase all code is tested with automated

acceptance test that is defined by a customer. A review meeting is

held to get the feedback.

XP software development recommends these principles [14] [15]

(see Figure 3):

• Planning game – a planning session where story cards

are defined and prioritized together with a customer.

• Test-first development – a development culture where

first a unit test is created and afterwards the code is

written.

• Simple design – a design that has a main set of classes

and methods and is created only when it is needed. No

generalized components are created if not needed.

• Stand up meeting – a short 15-20 minutes daily meeting

where each team member answers 3 main questions:

o What is done so far?

o What is planned to do until next meeting?

o What are the obstacles to achieve iteration

goals?

• On site customer – a working process where one or

more customers are in the same room as a development

team full time.

• Continuous integration – an integration activity where

all code is continuously integrated in a common

environment where the unit tests are run continuously.

• Short releases – an evolutionary delivery to increase

suitability for business needs.

• Acceptance test – an automated acceptance test that is

run with pass/fail result which is defined by a customer.

• Collective ownership – a development culture where

any pair of programmers can improve any code creating

an environment that no-one is blamed for mistakes in

code.

• Common room – a working environment where the

whole team is working as close as possible preferably in

one room. Separate spaces are available if a team

member needs it for a short while.

• Frequent refactoring – an effort to simplify the code to

make it cleaner without changing its functionality.

• Coding standards – a coding style accepted by a

company to ease coding and refactoring processes.

• 40 hours week – a working culture where work is

limited to working hours to increase creativity, health,

and avoid overtime.

• System metaphors – memorable metaphors to enable

better understanding about system in the design

sketches.

www.manaraa.com

7

• Pair programming – a development culture where all

code is produced by two programmers at one computer.

Figure 3. Extreme Programming (XP) Principles

2.3.3 Scrum
Scrum is an agile software development method that provides a

management framework [14].

There are four basic phases in the process [15]:

1. Planning

2. Staging

3. Development

4. Release

The goal of the planning phase is to set the vision and

expectations of a project and assign funding. This is done in pre-

game planning. Moreover, the project is divided into iterations

called sprints that are 30 calendar days.

In the staging phase requirements should be identified and

priorities assigned for the iteration. This phase begins with sprint

plan where the plan for iteration is created. External stakeholders

are involved to prioritize the tasks in sprint. No more additional

tasks can be added to sprint after the plan is created.

The development phase involves a system implementation in 30

days iterations and prepares it for a release. During this phase the

work in sprint is divided into daily blocks that lead to daily builds.

The development begins with high level design sketches. Every

day a 15 minutes stand up meeting is held to update on the sprint

status. During the meeting team members choose the tasks they

will be working next.

During the last phase the system should be deployed. After each

sprint the release meeting is held where a system to external

stakeholders is presented to get feedback. After that future

directions are set.

Scrum development process recommends these principles [14]

[15] (see Figure 4):

• Scrum meeting – a short 15-20 minutes daily meeting

where each team member answers 3 main questions:

o What is done so far?

o What is planned to do until next meeting?

o What are the obstacles to achieve iteration

goals?

• Sprint – 30-days iteration.

• Pre-game planning – a planning activity where the

product backlog is created with list of features, use

cases, and defects as well as product owner is assigned

to ease future communication.

• Sprint planning – a planning activity that consists of

two meetings: first, stakeholders refine and prioritize

product backlog, second, team and product owners plan

how to achieve iteration results and create task lists.

• Common room – a working environment where the

whole team is working as close as possible preferably in

one room. Separate spaces are available if a team

member needs it for a short while.

• Daily built – at least one integration with a regression

testing of the code in the system throughout a day.

• Blocks gone in one day – tasks that are finished in one

day (from one Scrum meeting to the other).

• Scrum master firewall – Scrum master (manager)

activity to assure that work in team is happening and no

undesired activities exist (extra work added to sprint or

any outside interruption) within the team.

• Lock priorities within sprint – priorities chosen at the

beginning of sprint. No extra work that could be added

to iteration is tolerated to maintain team focus on the

goal. In case extra work is added some work should be

removed.

• Sprint review – a meeting where a review for sprint is

executed and demo of a product is presented at the end

of sprint. Feedback and future directions are set during

this meeting.

• Decision is one hour – decision making process that

does not take longer than one hour. No decision is

worse than a bad decision and a bad decision can be

reversed.

• High level design – the sketch of design only to get

basic understanding about the system.

• Self-directed and self-organizing teams – the culture

where the team has authority and resources to choose

the best way to achieve sprint goals, to prioritize work,

and to solve its own problems.

• Team of 7 – the team that consist of no more than seven

people to assure efficiency and smooth communication.

Figure 4. Scrum Principles

2.3.4 Feature Driven Development (FDD)
Feature Driven Development (FDD) is an agile software

development method that values up front modelling and has “right

first time” approach. [10]. It is a minimally described five steps

process.[14]. First three steps are executed once in a project and

www.manaraa.com

8

called “startup phase” while steps 4 and 5 are iterated for feature

sets and called “construction phase” [17].

1. Develop an overall model

2. Build a features list

3. Plan by feature

4. Design by feature

5. Build by feature

First, the overall model is developed. The model is very brief and

it contains only main classes and their connections (shape rather

than the content). In larger projects the domain teams are formed

and domain models are created by different teams. They are

merged into overall model daily or every second day.

In the second step the complete and categorized features list is

build. To compile this list the domain is decomposed into Subject

Areas. Then Subject Areas are decomposed into Business

Activities and the Steps (features) within each Business Activity.

The size of a feature usually is from one to ten days work.

The goal of plan by feature stage is to produce a development

plan. Planning Team consisting of Project Manager, Development

Manager and the Chief Programmers is created. The team plans an

order that features have to be implemented according to feature

dependencies, complexity, and the load of development team.

Chief Programmers are assigned to Business Activities and

developers are assigned to own the classes.

Chief Programmer selects a feature set from his entire features list

called Chief Programmer Work Package. Then he forms Feature

Team by identifying the owners of the classes (developers) which

will be involved in the development of a selected feature set. This

team creates needed design for Chief Programmer Work Package

which is refined against overall model created in the first step.

Finally, Feature Team implements Chief Programmer Work

Package by following these steps: implement classes and methods,

inspect the code, run unit tests, and promote to the build. After the

build succeeds, new iteration from step 4 starts with a new Chief

Programmer Work Package and a new Feature Team.

As every Agile software development method, FDD has main

principles it follows [20] (see Figure 5):

• Domain Object Model – a process of creating the

framework of problem domain within which features

will be added.

• Development by Feature – a process where

development is driven and tracked by decomposed list

of small, client valued functions.

• Individual Class (Code) Ownership – a process where

the consistency, performance, and conceptual integrity

of each class is the responsibility of an assigned single

person.

• Feature Teams – a process encouraging doing design

activities in small, dynamically formed teams as well as

encouraging evaluating multiple design options before

one is chosen.

• Inspections – a process of defect-detection technique

providing opportunities to propagate good practice,

conventions, and development culture.

• Regular Builds – a process ensuring that there is always

a demonstrable system available. It also helps to solve

all synchronization issues as early in the process as

possible

• Configuration Management – a process ensuring an

easy way to identify/revert/change any version of

completed source code files and other artefacts of the

project

• Reporting/Visibility of Results – a process of frequent

and accurate progress reporting at all levels, inside and

outside the project, based on completed work.

Figure 5. Feature Driven Development (FDD) principles

Chapter 2 presented a short introduction to TOC with motivation

why we chose it for this master thesis research. Besides, a

description of agile software development in general as well as

four specific agile software development methods was given. The

following chapter explains the research methods we chose to use,

how we divided the research to answer our research question, and

what results we expect.

3. RESEARCH METHOD
This chapter explains the methods that we use in this master thesis

research. It explains how research is divided into phases, why

specific methods are chosen, and how they contribute to find the

answer to the main research question.

The main research question is:

• What are potential bottlenecks in agile software

development?

To answer this question, the research is divided into three phases.

Each phase has a question to answer. Answers to these three

questions leads to the answer of the main research question.

• Question 1: What high level bottlenecks might exist in

agile software development methods?

• Question 2: What bottlenecks might exist in Lean

software development?

• Question 3: What bottlenecks might exist in agile

software development implementation in a studied unit

at Ericsson?

The research is based on Constructive research method [18] as the

goal of the master thesis is to create a theoretical model using

existing theory and verify it in a studied unit at Ericsson. Further

subchapters explain each phase of research in more detailed. They

provide descriptions and motivation for each question and the

methods that are used to find the answers.

www.manaraa.com

9

3.1 Phase 1: identify possible high level

bottlenecks of agile software development

methods
The goal of phase 1 is to identify high level bottlenecks of agile

software development methods. In this research, we refer to high

level bottlenecks as missing or not directly addressed principles

and practices of agile software development methods.

To accomplish this goal, first, we have to get a clear

understanding of the agile software development principles and

their application in the specific agile software development

method. We have to identify the main principles as well as try to

understand the differences between various agile software

development methods. An extensive theoretical study in books,

articles, and websites of agile movement and different agile

software development methods will be done. Summarized results

in form of a short description of each agile software development

method are presented in subchapter 2.3.

Having this knowledge allows us to define question 1:

• What high level bottlenecks might exist in agile

software development methods?

To answer question 1 we make an assumption that each successful

agile software development method have to address all general

agile principles agreed by authors of Manifesto for Agile Software

Development [11]. Despite that, we expect that different agile

software development methods focus on different agile principles.

We use Atlas.ti [8] software to code all principles and practices of

analyzed agile software development methods. We use general

agile principles agreed by authors of Manifesto for Agile Software

Development [11] as codes.

Afterwards, TOC principles described in paragraph 2.1.1 are used

to model the system and make visual presentation of the results.

We transform coded data to a tree as described in paragraph 2.1.1

and visualized in Figure 1. Each principle and practice of each

analyzed agile software development method is connected to

general agile principle in it. We expect to find the gaps where

specific agile development method does not directly address

specific general agile principle. These gaps present possible high

level bottlenecks (areas to look more carefully into) in a specific

agile software development method.

Results of the phase 1 are presented in subchapter 4.1.

3.2 Phase 2: identify possible bottlenecks in

Lean software development
In phase 1 we identify possible high level bottlenecks for different

agile software development methods. In phase 2 we choose one

agile software development method and identify possible

bottlenecks for it. Furthermore, we define actions for each

identified possible bottleneck. Defined actions should help us to

measure if a possible bottleneck is a real bottleneck in a specific

agile software development method implementation.

This master thesis research industry partner Ericsson is

implementing agile software development approach [29]. This

approach is mainly following Lean software development

principles [12][13]. Therefore, Lean software development is

chosen from analyzed agile software development methods for

this phase.

Having the goal of phase 2 and agile software development

method, question 2 is defined:

• What bottlenecks might exist in Lean software

development?

According to Poppendiecks [13] Lean software development is

based on 7 principles. To be able to achieve success in a Lean

software development project, all principles must be fulfilled. To

fulfil each principle, a set of practices must be executed.

Therefore, first our task is to identify practices needed to

implement Lean principles. Atlas.ti [8] software is used to code

all identified Lean software development practices. Lean software

development principles are used as codes.

Afterwards, TOC principles described in paragraph 2.1.1 are used

to model the system and make visual presentation of the results.

We transform coded data to a tree as described in paragraph 2.1.1

and visualized in Figure 1. Each identified Lean software

development practice is connected to one of the seven Lean

software development principles.

Following TOC principles described in paragraph 2.1.1, we know

that core problems exist in lowest branches of the TOC cause-

effect tree. The lowest branches in the cause-effect tree that we

model in this phase are Lean software development practices. This

means that possible bottlenecks in Lean software development

might be each identified practice. Therefore, the output of phase

2, the Lean software development tree with possible bottlenecks is

called a theoretical model of possible bottlenecks in Lean

software development.

After we have the theoretical model of possible bottlenecks in

Lean software development created, we define actions for each

possible bottleneck. These actions help to identify if possible

bottleneck is a real bottleneck in a specific Lean software

development implementation. These actions will be the guidelines

for the interview questions in phase 3.

Results of phase 2 are presented in subchapter 4.2.

3.3 Phase 3: identify possible bottlenecks in

agile software development implementation in

a studied unit at Ericsson.
In phase 2 we develop the theoretical model of possible

bottlenecks in Lean software development. We also define actions

for each possible bottleneck.

The goal of phase 3 is to apply the theoretical model developed in

phase 2 for actual implementation of agile software development

method. Ericsson is implementing agile software development

[29], which is following the main principles of Lean software

development [12][13]. Therefore, the question 3 for this phase is:

• What bottlenecks might exist in agile software

development implementation in a studied unit at

Ericsson?

To answer this question the method of semi-structured interviews

[19] is chosen. This method allows us to focus interviews on

bottlenecks as well as to keep them open. To prepare for

interviews, we pre-select 7 most probable bottlenecks for agile

software development implementation in a studied unit at

Ericsson from all possible bottlenecks list identified in theoretical

model in phase 2. We base our selection on the rule to have one

bottleneck connected to each principle and our current knowledge

www.manaraa.com

10

about situation in a studied unit at Ericsson. After that, we prepare

a set of open questions (see Appendix A). These questions allow

interviewees to discuss and decide whether possible bottlenecks

exist in their environment. At the end of interviews, we ask

interviewees to prioritize analyzed possible bottlenecks according

to their influence on the whole project performance. The

prioritized list of possible bottlenecks in agile software

development implementation in a studied unit at Ericsson is the

expected output of the interviews.

Due to non disclosure agreements we will not be able to present

detailed results of the interviews. Therefore, only generalized

summary of the results of the phase 3 is presented in subchapter

4.3.

Chapter 3 explained what research methods we chose to answer

our research question and how we will use them. Results of this

master thesis research are presented in the following chapter.

4. RESULTS AND ANALYSIS
This chapter contains results of master thesis research gained

during all phases of the research as described in chapter 3.

The first subchapter (4.1) presents the comparison of principles of

analyzed agile software development methods against general

agile software development principles defined by the authors of

Agile Manifesto [11]. It provides us with information about

possible high level bottlenecks of each analyzed software

development method. It is the output of phase 1 of this research as

described in subchapter 3.1 and answers the research question 1:

What high level bottlenecks might exist in agile software

development methods?

The theoretical model for identifying possible bottlenecks in Lean

software development is presented in the subchapter 4.2. The

model includes descriptions of practices and bottlenecks, as well

as actions that should help to identify if bottleneck exists in

specific implementation. This subchapter is the output of phase 2

of this research as described in subchapter 3.2 and answers the

research question 2: What bottlenecks might exist in Lean

software development?

Finally, subchapter 4.3 presents analysis of interviews in a studied

unit at Ericsson. The main result is the list of possible bottlenecks

identified in agile software development implementation in a

studied unit at Ericsson. It is the output of phase 3 of this research

as described in subchapter 3.3 and answers the research question

3: What bottlenecks might exist in agile software development

implementation in a studied unit at Ericsson?

4.1 Possible high level bottlenecks of agile

software development
In 2001 creators and representatives of different agile software

development methods gathered together and agreed on Manifesto

for Agile Software Development [11] (referred as Agile Manifesto

later in text). This agreement started the agile software

development movement [14] and is considered to be the core

definition of the values of agile software development.

Four value statements defined in Agile Manifesto are extended by

12 Principles Behind the Agile Manifesto [11]. Each principle is

described in more detailed in subchapter 2.2. For the purpose of

this master thesis we assume, that these 12 principles are

important to consider while implementing an agile development

method. We do not question their validity or sufficiency and

accept them as it is.

Having two things in mind, assumption we just made and TOC

principles (described in paragraph 2.1.1), we can state, that in

order to have successful agile software development method all 12

agile principles mentioned above have to be addressed during

implementation. Following this conclusion we analyzed a set of

agile software development methods, identified their principles

and practices, and mapped each of them to one of the 12 agile

principles.

The output of the process was the agile software development

methods comparison tree presented in Figure 6. Top horizontal

row (boxes with double borders) presents 12 agile principles as

defined by the authors of Agile Manifesto. They are described in

more detailed in subchapter 2.2. Below them follows principles

and practices of each analyzed agile software development

method (described in paragraphs 2.3.1 - 2.3.4). These principles

and practices of each method are grouped by a surrounding oval.

Reading the tree vertically, you can identify how each agile

principle is directly addressed in different agile software

development methods. To summarize, the agile software

development methods comparison tree (Figure 6) presents the

comparison of principles and practices of analyzed agile software

development methods against agile principles defined by the

authors of Agile Manifesto.

In the tree we can see the gaps where no principle or practice of

agile software development method is connected to one of general

agile principles. We consider these gaps as possible high level

bottlenecks of the specific agile software development method. It

is important to note that these gaps might be addressed by agile

software development method indirectly throughout other

principles. Therefore, while discussing each possible high level

bottleneck in the following paragraphs, we will mention the

principles which address the bottleneck indirectly and can help to

elevate it.

Further paragraphs will provide a short discussion about each

identified possible bottleneck in analyzed agile software

development methods.

www.manaraa.com

11

Figure 6. Agile Software Development Methods Comparison Tree

www.manaraa.com

12

4.1.1 Possible high level bottlenecks of Lean

software development
Agile software development methods comparison tree (see Figure

6) shows that Lean software development (referred as Lean

further in this paragraph) has 5 possible high level bottlenecks:

• Lack of motivation for individuals (“Motivate

individuals” principle)

• Lack of frequent interaction with stakeholders (“Interact

frequently with stakeholders” principle)

• Lack of face-to-face communication (“Communicate

face-to-face” principle)

• Lack of continuity (“Maintain constant pace” principle)

• Lack of simplicity (“Keep it simple” principle)

Further paragraphs discuss each identified possible high level

bottleneck in context of Lean process and principles (described in

paragraph 2.3.1) and how they indirectly can help to avoid these

bottlenecks.

Lack of motivation for individuals. There is no principle that

directly addresses motivation for individuals in Lean. As it is an

important issue for achieving good results, individuals should be

motivated and a motivation system should be created. Lean refers

to motivation issue by implementing the “Empower the team”

principle. This principle empowers team members to decide how

to perform its best. The leaders of these teams should respect their

team members and encourage them to self-organize their

processes to complete the tasks. As a result motivation arises from

individuals themselves. Nevertheless, lack of motivation might

occur, so Lean managers should not ignore this possible

bottleneck and continuously observe the motivation level as well

as take actions.

Lack of frequent interaction with stakeholders. Lean principles

does not define how often project members should interact with

stakeholders. This step is a team responsibility as a team defines

its working processes. A team decides on the frequency and type

of communication with stakeholders (all people involved in the

project). Despite that, Lean principle “Create knowledge” requires

fast and frequent feedback for continuous learning. Therefore, it

should force teams to establish frequent and close communication

with stakeholders. Nevertheless, having poor processes of

communication with stakeholders, as there is no described

procedure of doing it, might still be a potential bottleneck

Lack of face-to-face communication. General agile principles

encourage face-to-face communication over other communication

channels. On the other hand, Lean suggests having daily short

stand up meetings. This should maintain good face-to-face

communication within the team. However, communication

channels with stakeholders are up to the team to decide. Ignoring

face-to-face communication with stakeholders or choosing time

consuming methods might increase the impact of this possible

bottleneck.

Lack of continuity. Agile principle “Maintain constant pace”

promotes sustainable development. All project stakeholders

should be able to maintain constant pace while using agile

software development. As mentioned before, Lean principle

“Create knowledge” focuses on continues learning, feedback and

improvements, which should help Lean teams to maintain

sustainable development. Despite that, Lean managers should

make sure that gained knowledge is shared in a company to be

able to deliver upcoming projects with the same pace.

Lack of simplicity. Agile development aims for simplicity. The

principle encourages as simple methods and processes as possible.

Therefore this might be the hardest possible bottleneck for Lean

to break. Lean is relatively complicated method, focusing on

improving many processes at the same time. It also addresses

software development from highly managerial point of view, not

getting into the technical details of software development as such

and leaving it for self-organizing teams to manage. Therefore,

Lean managers should keep in mind this possible bottleneck and

make sure that all team members understand the value and

processes of Lean and are committed to follow them.

4.1.2 Possible high level bottlenecks of Extreme

Programming (XP)
Agile software development methods comparison tree (see Figure

6) shows that Extreme programming (referred as XP further in

this paragraph) has 2 possible high level bottlenecks:

• Lack of frequent interaction with stakeholders (“Interact

frequently with stakeholders” principle)

• Lack of reflection and adjustments to improve (“Reflect

and adjust continuously” principle)

Further paragraphs discuss each identified possible high level

bottleneck in context of XP process and principles (described in

paragraph 2.3.2) and how they indirectly can help to avoid these

bottlenecks.

Lack of frequent interaction with stakeholders. Agile principle

requires interacting frequently with all project stakeholders

(customers, product managers, sponsors, and other people

involved in the project). XP focuses extensively on

communication only with a customer. A customer has to be on

site together with a development team (“On site customer”

principle). He/she prioritizes what has to be developed first, does

acceptance testing. However, other stakeholders (except

customer) are almost not mentioned in the XP principles. This is

definitely a possible bottleneck for the method.

Lack of reflection and adjustments to improve. There is no

principle in XP that directly addresses how team should reflect

and improve its processes. This is probably the hardest possible

bottleneck for XP to break as XP is highly focused on technical

software development activities. It advocates for simple self-

organizing processes (e.g. “Simple design”, “Pair programming”

principles). Therefore it is relatively hard for managers to

establish a stable ongoing reflection and improvement processes

in such environment.

4.1.3 Possible high level bottlenecks of Scrum
Agile software development methods comparison tree (see Figure

6) shows that Scrum has 2 possible high level bottlenecks:

• Lack of frequent interaction with stakeholders (“Interact

frequently with stakeholders” principle)

• No project progress measurement by working software

(“Measure by working software” principle).

www.manaraa.com

13

Further paragraphs discuss each identified possible high level

bottleneck in context of Scrum process and principles (described

in paragraph 2.3.3) and how they indirectly can help to avoid

these bottlenecks.

Lack of frequent interaction with stakeholders. Agile principle

requires interacting frequently with all project stakeholders

(customers, product managers, sponsors, and other people

involved in the project). Although Scrum does not require client

to be “on site” as it is in XP, customer is responsible for

prioritizing what has to go into Sprint backlog (“Sprint planning”

principle) from the project features backlog. Despite that,

interactions with other stakeholders (except customer) are almost

not mentioned among Scrum principles. Therefore, this is

definitely a possible high level bottleneck for Scrum.

No project progress measurement by working software. Agile

principle states, that the only project progress measurement

should be the amount of working software deployed in a

production environment. Scrum measures project progress using

Sprint Backlog Graph [14] which shows tasks finished by

developers, but not features accepted by customers as general

agile principle states. Therefore, “No project progress

measurement by working software” is considered to be a possible

high level bottleneck for Scrum.

4.1.4 Possible high level bottlenecks of Feature

Driven Development (FDD)
Agile software development methods comparison tree (see Figure

6) shows that Feature Driven Development (referred as FDD

further in this paragraph) has 7 possible high level bottlenecks:

• Lack of customer satisfaction (“Satisfy the customer”

principle)

• Lack of motivation for individuals (“Motivate

individuals” principle)

• No project progress measurement by working software

(“Measure by working software” principle).

• Lack of face-to-face communication (“Communicate

face-to-face” principle)

• Lack of continuity (“Maintain constant pace” principle)

• Lack of simplicity (“Keep it simple” principle)

• Lack of reflection and adjustments to improve (“Reflect

and adjust continuously” principle)

Further paragraphs discuss each identified possible high level

bottleneck in context of FDD process and principles (described in

paragraph 2.3.4) and how they indirectly can help to avoid these

bottlenecks.

Lack of customer satisfaction. Agile principle states that the main

goal is to satisfy the customer by delivering valuable software

frequently. Customer satisfaction should be the main drive for the

project. FDD principles do not directly talk about customer

satisfaction. The method focuses on implementing requirements

(feature sets) and measures success by accomplished ones.

Therefore, this is a possible high level bottleneck for FDD.

Lack of motivation for individuals. Agile principle considers

motivating team members as very important part of project

success. In FDD different feature teams are formed for each

iteration (“Feature Teams” principle). People have to switch

between different teams continuously. Keeping individuals

motivated in such environment might be an issue. Therefore, lack

of motivation for individuals is a possible high level bottleneck

for FDD.

No project progress measurement by working software. Agile

principle states, that the only project progress measurement

should be the amount of working software deployed in a

production environment. FDD measures project progress by

accomplished feature sets. This does not mean that implemented

feature sets are accepted by a customer. After the review they

might require changes. Therefore, this is a mismatch what a

general agile principle states and should be considered as a

possible high level bottleneck for FDD.

Lack of face-to-face communication. Agile principle encourages

face-to-face communication over other communication channels.

FDD principles do not imply what communication channels teams

should use. Moreover, FDD principle “Individual class (code)

ownership” might unintentionally decrease face-to-face

communication among FDD team members as each of them is

responsible for his owned class and does not need to communicate

with other team members often. Not considering face-to-face

communication or choosing time consuming methods might

increase the impact of this high level bottleneck.

Lack of continuity. Agile principle “Maintain constant pace”

promotes sustainable development. All project stakeholders

should be able to maintain constant pace while using agile

software development. FDD principles do not propose how

continuity should be ensured and learned lessons shared within

the company to establish constant development pace in future

projects. Therefore, implementing FDD the processes to ensure

continuity should be establish to decrease the impact of this high

level bottleneck.

Lack of simplicity. Agile development aims for simplicity. The

principle encourages as simple methods and processes as possible.

“If you want to be fast and agile, keep things simple. Speed isn’t

the result of simplicity, but simplicity enables speed” [30]. FDD

has quite complex processes, as it is designed for bigger projects

(there is a case study of using FDD in project with 250 people

lasting 18 months [14]). Keeping simplicity in FDD is a possible

high level bottleneck and should not be ignored.

Lack of reflection and adjustments to improve. There is no

principle in FDD that directly addresses how a team should reflect

and improve its processes. FDD principles define how to manage

FDD project, but does not address how to reflect about principles,

collect feedback and improve ongoing process to fit the needs of a

specific environment. A reflection and improvements system

should be created in FDD implementations to break this high level

bottleneck.

This subchapter discussed identified high level bottlenecks

(lacking principles) of four agile development methods. These

bottlenecks present parts that selected methods lack or do not

address directly. Very often, when implementing a specific

method, the most effort is devoted for implementation, forgetting,

that method itself can be not complete. If company wants to

succeed in implementing agile software development principles,

identified bottlenecks should be kept in mind when implementing

a selected method.

www.manaraa.com

14

4.2 Possible bottlenecks in Lean software

development
In the previous subchapter we discussed possible high level

bottlenecks of agile software development methods. We

investigated which agile principles are not addressed in a specific

agile method.

In this subchapter a theoretical model is presented to identify

possible bottlenecks in Lean software development. We

investigate Lean software development practices and define when

they can become bottlenecks. Moreover, the actions that allow

identifying each bottleneck are defined as well. In this subchapter

we provide with the answers to the research question 2 described

in subchapter 3.2: What bottlenecks might exist in Lean software

development?

For the purpose of this master thesis we assume, that Lean

principles (described in 2.3.1) are necessary and sufficient

condition for software development process to be recognized as

lean. We do not question their validity or sufficiency and accept

them as they are.

Following the assumption we made above and using TOC

principles (described in paragraph 2.1.1) we can state, that in

order to have successful project all 7 lean principles have to be

addressed. To achieve that, the practices that support each

principle have to be implemented. If the practice is not

implemented (not fully implemented) we consider it as a

bottleneck. Following this conclusion we identified lean practices

and mapped each of them to one of the 7 lean principles.

The output of the process was the tree presented in Figure 7. In

the top horizontal row there are 7 principles of lean development.

Below them identified practices are grouped according to which

principle they directly address. In order to read the tree, if-then

logics should be used. For example, IF we want to have a

successful project using lean development THEN we need to

address the principle “Eliminate waste”. In order to address the

principle “Eliminate waste” we need to implement the practice

“Eliminate defects”.

Create Knowledge Built Quality InEliminate Waste

Successful project

Optimize

the Whole

Empower

the Team

Deliver as Fast

as Possible
Defer Commitment

Remove extra

processes

Develop needed

features

Reduce partially

done work

Concentrate on

one task

Decrease time

used for motion

Reduce waiting

Eliminate defects

Decrease

management

activities

Iterations

Fast feedback

Breadth-First

problem solving

Maintain options

Pull systems

Limit work to

capacity

Set-Based

decision making

The last

responsible

moment

Leadership

Competence

Self-Determination

Motivation

Team based

rewards

Test-Driven

development

Refactoring

Synchronization

Discipline

Global

measurements

Cooperation with

partners

Global

optimization

Figure 7. Lean Software Development Tree

www.manaraa.com

15

Basic understanding about lean software development principles

is provided in paragraph 2.3.1. Each principle has practices that

directly address it. A thorough description of practices as well as

possible bottlenecks is provided in following paragraphs 4.2.1-

4.2.7. We discuss each principle one by one with corresponding

practices.

The structure of 4.2.1-4.2.7 is as follows. First, the figure is

presented where each lean principle is connected to a possible

bottleneck. The motivation behind it is to point possible

bottlenecks as TOC offers to look at root problems of each

process. If we want to implement a practice successfully the

bottleneck that stops the practice from implementation should be

broken. That means, if the bottleneck will be eliminated the

practice will be implemented successfully. If the practice will be

implemented successfully, the principle will be implemented

successfully as well.

Second, each practice is described in a structure: practice,

bottleneck, and action. Practice description shows the aim of the

practice. Bottleneck is described as an activity or process that

stops implementing the practice. Action is defined as checklist

that enables to measure weather a bottleneck exists or not.

4.2.1 Eliminate Waste

Figure 8. Possible bottlenecks of the Eliminate waste principle

Eliminate defects. The practice encourages looking for defects as

early as possible and eliminating defects as soon as they are

tracked. This should reduce the waste of time in late system fixes.

Bottleneck “Defects” – defects that are identified late in the

system.

Action: List most common defects and indicate the ones that

could be avoided/detected and fixed in earlier product lifecycle

stages.

Decrease Time Used for Motion. The practice encourages

reducing needed movement time for documents, artefacts or

people. For example, sending an architecture document in parts

would enable developer to start developing a part of the system;

working in a common room would decrease the time to get

answers from the colleagues. .

Bottleneck “Motion” – the time that a person, a document, an

artefact is in motion.

Action: List most common activities that require motion and

indicate the ones that the time needed for motion could be

reduced.

Reduce partially done work. The practice encourages to do short

releases to reduce the amount of work that is currently in a

pipeline as it has a tendency to become obsolete.

Bottleneck “Partially done work” – is amount of work in a

pipeline (from idea to deployment in production).

Action: Estimate the work that is currently in the pipeline and

compare to the pipeline capacity.

Remove extra processes. The practice encourages reviewing all

processes in company, prioritizing them, and removing the ones

that add the least value for a customer (product).

Bottleneck “Extra processes” – the processes that do not add

value for the customer (product).

Action: List all tasks performed by employees and indicate the

ones that add the least value for a customer (product).

Develop needed features. The practice encourages prioritizing the

features according to customer (market) needs and developing

only the most important ones.

Bottleneck “Extra features” – the features that do not add (add

very little) value for the customer (product).

Action: List all feature candidates for the product and indicate the

ones that add the least value for a customer (product).

Concentrate on one task. The practice encourages working on one

task at once.

Bottleneck “Task switching” – a resource has to switch between

two or more tasks.

Action: List parallel tasks executed by the same resources and

indicate the ones that switching could be avoided.

Reduce waiting. The practice encourages reviewing a process of a

product lifecycle in a company and checking where the waiting

time can be reduced.

Bottleneck “Waiting” – time spent on waiting for things to

happen.

Action: Create a value stream (throughput) map and indicate the

longest waiting times.

Decrease management activities. The practice encourages

reviewing management activities, prioritizing them and removing

the ones that add the least value for a customer (product).

Bottleneck “Management activities” – management activities that

do not add value for the customer (product).

Action: List management activities and indicate the ones that add

the least value for a customer (product).

4.2.2 Build Quality In

Figure 9. Possible bottlenecks of the Build quality in principle

Synchronization. The practice encourages integrating the code

frequently into the system and testing the system as soon as it is

integrated to decrease integration problems and to reduce amount

of defects during the final release.

Bottleneck “Challenges due to synchronization” – infrequent or

troublesome code integration into the system.

Action: List all synchronization activities (daily builds, builds by

feature, system builds) and the most common problems that

appear due to synchronization.

Test-driven development. The practice encourages developing

defects free software that corresponds to specification that is

written in form of executable tests.

www.manaraa.com

16

Bottleneck “No test-driven development” – a development

method where specification is not written in form of executable

tests.

Action: List most common defects and identify the ones that could

be found if specification would be written in form of executable

tests.

Refactoring. The practice encourages improving code, by making

it more readable and simplifying the design yet not changing the

functionality of it.

Bottleneck “No refactoring” – the absence of time allocated for

refactoring.

Action: List refactoring activities and estimate the time that is

spent.

Discipline. The practice encourages creating the rules/instructions

that people should follow (such as coding standards, naming

conventions) to assure better quality.

Bottleneck “Lack of discipline” – the absence of rules/instructions

that people should follow.

Action: List current rules/instructions and problems that arise due

to absence of some of them.

4.2.3 Create Knowledge

Create

Knowledge

No iterations
Lack of fast

feedback

Point-based

decision making

Figure 10. Possible bottlenecks of the Create knowledge

principle

Fast feedback. The practice that encourages getting feedback as

soon as the chance appears in different stages of a product

lifecycle.

Bottleneck “Lack of fast feedback” – no feedback is collected

during different stages of a product lifecycle.

Action: List all feedback sessions and the problems that are

discussed most often during them.

Iterations. A practice that encourages developing software in

short fixed timeframes.

Bottleneck “No iterations” – the software is developed in non

iterative way and there is only one delivery to the client at the end

of development.

Action: Identify the number and the length of iterations used in

product development cycle.

Set based decision making. The practice that encourages a

decision making process where a decision should be chosen from

a set of possible options.

Bottleneck “Point-based decision making” – a decision making

process where a decisions are proposed and refined with everyone

until consensus is reached.

Action: List all decision making processes and indicate the ones

that are point-based.

4.2.4 Defer Commitment

Figure 11. Possible bottlenecks of the Defer commitment

principle

Maintain options. The practice that encourages a process where

few options are maintained and a decision to chose the best one is

made as late as possible.

Bottleneck “No options maintained” – a process where a

decisions to choose one option are made early in the lifecycle.

Action: List made decisions and indicate the ones that prevented

maintaining several options till later in the lifecycle.

Breadth-first problem solving. The practice that encourages a

problem solving process based on breadth-first attitude.

Bottleneck “Depth-first problem solving” – a problem solving

process based on depth-first attitude.

Action: List all problem solving processes and indicate the ones

that are depth-first.

The last responsible moment. The practice that encourages a

decision making process where decision is taken at the last

possible moment (a moment when the absence of decision creates

loss or eliminates an important alternative).

Bottleneck “Early decisions” – a decision making process where

a decision is taken as soon as it is possible.

Action: List all decision making processes and indicate the ones

that could be postponed.

4.2.5 Deliver as Fast as Possible

Figure 12. Possible bottlenecks of the Deliver as fast as

possible principle

Limit work to capacity. The practice that encourages a work

organization process where an amount of work in a pipeline

equals to an amount of work resources can execute.

Bottleneck “Overloaded pipeline” – a work organization process

where an amount of work in a pipeline exceeds an amount of

work resources can execute.

Action: Estimate all work in a pipeline and compare to an amount

of work the resources can execute.

Pull systems. The practice that encourages creating processes

which enable developers to decide work processes without a

management direction.

Bottleneck “Lack of pull systems” – every task for developer has

to be assigned by a manager.

www.manaraa.com

17

Action: List processes of tasks assignment and define the ones that

require constant management direction.

4.2.6 Empower the Team

Figure 13. Possible bottlenecks of the Empower the team

principle

Leadership. The practice that encourages having a team leader

(not manager) who leads a team, motivates individuals in it, and

sets a direction for a team.

Bottleneck “Lack of leadership” – no team leader responsible for

leading and motivating a team as well as setting a direction for it.

Action: List team leader’s/manager’s responsibilities and indicate

the ones that encourage the role as a manager rather than a leader.

Self-determination. The practice that encourages a culture where

an individual has authority to choose tasks and prioritize them as

well as organize the way of executing them and solve the

problems along the way.

Bottleneck “Lack of self-determination” – a culture in the

company where an individual get the tasks assigned by a manager

and the way is already set on how to do it as well as there are clear

procedures how to solve problems along the way.

Action: List procedures of task assignment and identify the ones

that do not require self-determination.

Competence. The practice that encourages having ability

(knowledge and skills) within a team to perform needed tasks to

reach a goal.

Bottleneck “Lack of needed competence” – lack of the ability

within the team to perform needed tasks to reach a goal.

Action: List all needed competences within the team to

accomplish the tasks and indicate the ones that are missing.

Motivation. The practice encourages an engagement to perform a

specific task.

Bottleneck “Lack of motivation” – lack of engagement to perform

a specific task.

Action: List all motivating factors and indicate the ones that are

missing.

Team based rewards. The practice that encourages team

incentives for a well performed job over the personal recognition.

Bottleneck “Personalized rewards” – an incentive for a well

performed job is based on personal recognition rather than a team

one.

Action: List all rewards systems and indicates the ones that are

based on rewarding personal achievements rather than a team

performance.

4.2.7 Optimize the Whole

Figure 14. Possible bottlenecks of the Optimize the whole

principle

Global optimization. The practice that encourages improving the

whole system rather than a part of it.

Bottleneck “Local optimization” – an improvement process that

optimizes a part of the system but not necessary the system as a

whole.

Action: List all improvements and indicate the ones that focus on

local optimization that does not improve the system as a whole.

Global measurements. The practice encourages value stream

(throughput) measurements that lead to a global optimization.

Bottleneck “Local measurements” – value stream (throughput)

measurements that focus on a local optimization.

Action: List all measurements and indicate the ones that focus on

a local optimization.

Cooperation with partners. The practice encourages close

communication and cooperation with partners (people and

companies).

Bottleneck “Lack of cooperation with partners” – the absence of

close cooperation with partners based on reaching a common

goal.

Action: List all partners and indicate the ones that do not seek for

the same goal as your company does.

In this subchapter we developed a theoretical model that enables

to identify bottlenecks in Lean software development

implementations. We explained each Lean practice and defined a

possible bottleneck for it. Besides, we proposed actions that help

to identify if a particular bottleneck exists in real Lean software

development implementation. Companies that implement Lean

software development could use this theoretical model to identify

what bottlenecks exist in their implementations.

We verified this model in an agile software development

implementation in a studied unit at Ericsson. The results are

presented in the following subchapter.

4.3 Possible bottlenecks in agile software

development implementation in a studied unit

at Ericsson
In previous subchapter we presented our theoretical model for

identifying possible bottlenecks in Lean software development.

We defined main Lean practices, possible bottlenecks, and actions

that help to identify if a bottleneck really exists in a specific

implementation.

The goal of research phase 3 was to verify our theoretical model

at our research industry partner Ericsson. Using the model we

found possible bottlenecks in agile development implementation

in a studied unit at Ericsson and answered our research question

3: What bottlenecks might exist in agile software development

implementation in a studied unit at Ericsson?

www.manaraa.com

18

To perform full analysis, each possible bottleneck in the

theoretical model had to be discussed. Due to time constraints,

first, we had to simplify the model. We reviewed all possible

bottlenecks in it and preselected 7:

1. Waiting (follows Eliminate waste principle)

2. Challenges due to frequent synchronization (follows

Build quality in principle)

3. Lack of fast feedback (follows Create knowledge

principle)

4. Early decisions (follows Defer commitment principle)

5. Overloaded pipeline (follows Deliver as fast as possible

principle)

6. Lack of needed competence (follows Empower the team

principle)

7. Local optimization (follows Optimize the whole

principle)

The selection was based on the rule to have one bottleneck

connected to each principle and according to our current

knowledge about situation in a studied unit at Ericsson and our

own judgment if possible bottleneck might exist there.

We prepared open questions (see Appendix A) and conducted

three semi-structured interviews with representatives from

Ericsson. At the end of the interviews we asked each interviewee

to select the bottleneck, which he thought was the most important

one at the moment.

Summary of possible bottlenecks identified in a studied unit at

Ericsson is presented in

Table 1. The organization of the table is as follows. First two

columns (“Lean principle” and “Lean bottleneck”) present the

possible bottlenecks and principles they address preselected from

our theoretical model. The third column (“A possible bottleneck

in a studied unit at Ericsson”) describes identified possible

bottleneck. “Prioritization by interviewees” column identifies

which possible bottleneck the interviewees choose as the main

one at the end of the interview.

Due to non disclosure agreement with Ericsson we cannot present

detailed descriptions of identified possible bottlenecks in this

paper, therefore only generalized discussion will follow.

We found that 6 out of 7 our preselected possible bottlenecks

might exist in a studied unit at Ericsson. Two of them link to the

same possible improvement in testing procedures. Despite the fact

that possible bottlenecks, prioritized by interviewees did not

match exactly, we found very close connections between them.

The bottleneck “Visibility of the global measurements”

(considered as the main by interviewee 1) means, that we did not

find formal measurements to measure the impact of decisions to

the system as a whole, which leads to local optimization. If the

cost of lead time on the system level is fully known, it would

make a more clear case for addressing the other bottlenecks. Data

of the interviews and prioritization of the possible bottlenecks by

interviewees show that Ericsson is aware of the possible

bottlenecks we identified and is working on solving them.

This subchapter presented results of our research phase 3. We

verified our theoretical model developed in phase 2 and identified

possible bottlenecks in agile development implementation in a

studied unit at Ericsson. After this case study we are firm to state

that the model can be used to identify bottlenecks effectively in

Lean software development implementations in other companies

as well.

Table 1. Summary of potential bottlenecks identified in a studied unit at Ericsson

Lean principle Lean bottleneck A potential bottleneck in a studied unit at Ericsson
Prioritization

by interviewees

Eliminate Waste Waiting
Time spent by product managers evaluating and documenting

low priority features

Build Quality In
Challenges due to frequent

synchronization
Lead time of testing procedures

Interviewee 2

Interviewee 3

Create

Knowledge
Lack of fast feedback Lack of official designer to designer communication process

Defer

Commitment
Early decisions None

Deliver As Fast

As Possible
Overloaded pipeline

Testing procedures require more time than testing resources can

handle
Interviewee 2

Empower the

team
Lack of needed competence

Different and not completely matching competence development

models that are encouraged by different organizational structures.
Interviewee 2

Optimize the

Whole
Local optimization Visibility of the global measurements Interviewee 1

www.manaraa.com

19

The feedback about the model was positive from representative

from Ericsson. He stated that our “model is relevant especially if

you are new to the agile software development methods and about

to deploy it in your organization. However in a running agile

development, some bottlenecks are very easily found in practice,

(e.g. the physical ones like Test lead time). When you try to

address them you will reveal more hidden bottlenecks such as

policy bottlenecks. Your method has a potential to put attention

to the more hidden bottlenecks at an earlier stage, trying to avoid

them to appear in the first place. If there is a practice not used

from a certain method, your model can find arguments from

Theory of Constraints (TOC) on why that practice should be

implemented or not depending on the specific conditions in the

particular development unit. I find the method very natural

because the agile methods share the same goal as TOC, i.e. to

bring high throughput, high flexibility and fast time to market.

They can be regarded as method frameworks for how to achieve it

in software development. Lacking practices or practices that can

be improved are, therefore, an indicator that a bottleneck might

appear.”

5. THREATS TO VALIDITY
In this chapter we will discuss threats to validity of our master

thesis research. As our research was divided into 3 phases we will

discuss threats to validity of each phase separately in following

subchapters.

5.1 Possible High Level Bottlenecks of Agile

Software Development
First threat to validity is that we compared only 4 agile software

development methods (Lean, Extreme Programming (XP), Scrum,

and Feature Driven Development (FDD)). There are more agile

software development methods that could be compared and

analyzed. The analysis focused on each method separately;

therefore, we claim that it is valid for the analyzed methods.

Moreover, the same approach could be used to analyze other agile

software development methods.

Second, the analysis was performed based on data found in books

and articles. The existence of high level bottlenecks could be

checked in real implementations in companies. That would verify

and extend the theoretical analysis.

5.2 Possible bottlenecks in Lean software

development
First threat to validity for the model is that it was based on data

found in books and articles. Moreover, the authors of most used

literature are Mary and Tom Poppendiecks. Although they are

considered to be gurus of Lean software development, additional

check in real implementations is needed to verify the model. We

did it partially in the third phase of our research at Ericsson.

Nevertheless, full validation of the model (including all possible

bottlenecks) was not conducted.

Moreover, we defined actions how to identify if possible

bottlenecks really exist in a real Lean implementation. These

actions helped us to formulate questions for the interviews in the

third phase. On the other hand, we verified only part of actions

(the ones that we investigated).

5.3 Bottlenecks in Agile Software

Development Implementation in a studied unit

at Ericsson
First threat to validity for identified possible bottlenecks is that we

performed only 3 interviews. That represents very small part of

people working with agile software development in a studied unit

at Ericsson. Despite the fact, the interviewees were people

working directly with agile software development (the process

itself or using it to create the product) and had different roles and

positions in the company. Therefore, we can state that we

collected data that represents the opinion of wide range of people.

Second, due to time constraints, we evaluated only part of our

theoretical model as we preselected possible bottlenecks by

ourselves. Therefore, there is a good chance that more possible

bottlenecks might be found in agile software development

implementation in a studied unit at Ericsson. Despite that, we

believe that the ones we found are important, and if elevated,

could help to improve current processes.

6. CONCLUSIONS
Agile software development emerged as a need to respond to the

rapidly changing market. Creating software using document-

driven, rigorous software development processes became too

slow. Many agile software development methods were developed

and successfully implemented in different organizations.

Despite the fact that all agile software development methods

follow the same values, they address them in different ways. They

all have bottlenecks (week parts) that should be carefully

monitored while implementing the method. In this master thesis

research, using principles of Theory of Constraints, we identified

these bottlenecks in different level of detail.

In the first phase of our research, we identified possible high level

bottlenecks (lacking principles) of four agile software

development methods (Lean software development, Extreme

Programming (XP), Scrum, and Feature Driven Development

(FDD)). These high level bottlenecks present general agile

development practices that analyzed methods do not have or do

not address directly. They should be kept in mind while

implementing the selected method. As a result, it is not enough to

focus on implementing a method itself. What a specific agile

software development method lacks (according to agile principles)

is also important and should not be forgotten.

In the second phase of our research, we selected to investigate

Lean software development method deeper. The decision to

choose Lean was made because our research industry partner,

Ericsson, is implementing the agile software development method

that follows the main Lean principles. We developed the

theoretical model that could be used to identify bottlenecks in

Lean software development implementations. The theoretical

model includes descriptions of possible bottlenecks as well as

actions that enable to identify if a bottleneck exists in a particular

Lean implementation.

During the last phase of the research we verified the theoretical

model developed in the second phase. We interviewed people

involved in the agile software development implementation in a

studied unit at Ericsson, identified, and prioritized the possible

bottlenecks. Only generalized results of this phase are presented

in this document. The case study proved that our theoretical

www.manaraa.com

20

model developed in research phase 2 is valid and can be used in

other companies implementing Lean software development to

identify bottlenecks. Moreover, representative from Ericsson

mentioned that our model put a focus on policy bottlenecks that

might be hard to notice from the beginning and helps to avoid

them to appear in the first place.

Our master theses research as a whole expands the knowledge

area of agile software development and implementation of

different methods. Limited number of identified bottlenecks

narrows down possible areas of issues and helps to focus on the

core problems. Moreover, this was the first attempt (as far as we

could find) to use Theory of Constraints principles to examine

agile methods. The theory proved to be very useful as analytical

tool in this kind of investigation. Its principles could be further

used to find out how to eliminate identified bottlenecks and how

to create a process of continuous improvement in an organization.

The purpose of this master thesis research was to identify high

level bottlenecks of four agile software development methods and

create a theoretical model for identifying bottlenecks in Lean

software development implementations. Further research could

follow in couple different ways. It could identify high level

bottlenecks or develop theoretical models for other agile software

development methods. It also could investigate and create

guidelines how to elevate each possible bottleneck.

ACKNOWLEDGEMENTS
The authors would like to thank interviewees from Ericsson as

well as supervisors Miroslaw Staron and Helena Holmström

Olsson from IT University of Gothenburg for their time. We

greatly appreciate your effort, involvement, and support.

REFERENCES
[1] Eliyahu M. Goldratt: “Critical Chain”, The North River

Press, 1997

[2] Eliyahu M. Goldratt: “The Goal”, 2nd revised ed. Great

Barrington, The North River Press, 1992 (1st ed., 1984,2nd

ed., 1986)

[3] Eliyahu M. Goldratt: “It's Not Luck”, Aldershot, England,

Gower, 1994

[4] Eliyahu M. Goldratt, Eli Schragenheim and Carol Ptak:

“Necessary but Not Sufficient”, North River Press, 2000

[5] Eliyahu M. Goldratt: “What is this thing called the theory of

constraints?”, NY, The North River Press, 1990.

[6] Eliyahu M. Goldratt: ”The haystack syndrome”, NY, The

North River Press, 1990

[7] Lawrence P. Leach: “Critical Chain Project Management”,

Second Edition, Artech House Publishers, 2004

[8] ATLAS.ti, http://www.atlasti.com, last accessed: 2007-11-25

[9] H. William Dettmer: “Goldratt’s Theory of Constraints. A

Systems Approach to Continuous Improvement”, ASQC

Quality Press, 1997

[10] David J. Anderson: “Agile Management for Software

Engineering. Applying the Theory of Constraints for

Business Results”, Prentice Hall, 2006

[11] Agile Manifesto, http://www.agilemanifesto.org, last

accessed: 2008-03-21

[12] Mary Poppendieck and Tom Poppendieck: “Implementing

Lean Software Development: From Concept to Cash”,

Pearson Education, 2007

[13] Mary Poppendieck and Tom Poppendieck: “Lean Software

Development: An Agile Toolkit”, Addison-Wesley, 2003

[14] Jim Highsmith: “Agile Software Development Ecosystems”,

Addison-Wesley, 2002

[15] Craig Larman: “Agile and Iterative development: a Managers

Guide”, Addison-Wesley, 2004

[16] http://www.netobjectives.com/training/lean-software-

development, last accessed: 2008-04-04

[17] http://www.nebulon.com, last accessed: 2008-04-06

[18] http://en.wikipedia.org/wiki/Constructive_research, last

accessed: 2008-05-13

[19] http://en.wikipedia.org/wiki/Semi-structured_interview, last

accessed: 2008-05-13

[20] Stephen R. Palmer and John M. Felsing: “A Practical Guide

to Feature-Driven Development”, Pearson Education, 2002

[21] Mary Poppendieck: “Lean Software Development”,

IEEE Computer Society, 29th International Conference on

Software Engineering (ICSE'07 Companion), pp. 165-166,

2007

[22] Roy Morien: ”Agile Management and the Toyota Way for

Software Project Management” 3rd IEEE International

Conference on Industrial Informatics (INDIN), pp. 516-522,

2005

[23] Jonathan Rasmusson: “Agile Project Initiation Techniques –

The Inception Deck & Boot Camp”, Proceedings of AGILE

2006 Conference (AGILE’06), 2006

[24] Sanjiv Augustine, Fred Sencindiver, Susan Woodcock:

“Agile Project Management: Steering From The Edges”,

Communications of the ACM, Vol. 48, No. 12, 2005

[25] Damon Poole: “Breaking the Major Release Habit”, ACM

Queue, October, 2006

[26] Mikael Lindvall, Dirk Muthig, Aldo Dagnino, Christina

Wallin, Michael, Stupperich, David Kiefer, John May,

Tuomo Kähkönen: “Agile Software Development in Large

Organizations”, IEEE Computer Society, December, 2004

[27] Barry Boehm, Richard Turner: “Management Challenges to

Implementing Agile Processes in Traditional Development

Organizations”, IEEE Software, 2005

[28] Lan Cao, Balasubramaniam Ramesh: “Agile Requirements

Engineering Practices: An Empirical Study”, IEEE Software,

2008

[29] Piotr Tomaszewski, Patrik Berander and Lars-Ola Damm:

“From Traditional to Streamline Development –

Opportunities and Challenges”, Software Process

Improvement and Practice, vol. 13, pp. 195-212, 2008

[30] Jim Highsmith: “Agile Project Management”, Addison-

Wesley, 2004

[31] Mark C. Paulk: “Extreme Programming from a CMM

Perspective”, IEEE software, 2001

www.manaraa.com

21

Appendix A

Eliminating waste (Waiting)

1. Do you experience that artefacts have waiting periods? Where usually is the longest artefact inactivity moment? (Waiting for

resources, waiting for approvals, and other waiting periods.)

Build quality in (Synchronization)

2. How do you perform synchronization? Do you encounter any problems due to continuous synchronization? If so, could you name the

top problems?

Create knowledge (Fast feedback)

3. Does your team have regular feedback sessions? If yes, how often? Which problems are discussed most often? Is a customer involved

into these feedback sessions?

Defer commitment (The last responsible moment)

4. Is there a practice in a company to create several solutions (or one adaptable) for the complex problem? If yes, when and how? If no,

why not? When is the final decision made?

Deliver as fast as possible (Limit work to capacity)

5. Do you have a backlog of features prepared for iterations? How much work (in person hours) is there in the list? How much time do

you spend on managing the backlog of features?

Empower the team (Competence)

6. Have you identified the competences of each team member in your teams? What processes do exist to share their knowledge with

others?

Optimize the whole (Global optimization)

7. How do you decide which processes to improve? Are there any specific measurements that influence the decision? Do those

measurements focus on local optimization? Are they evaluated against the impact to the whole system (project)? Could you exemplify

both?

